Image from Google Jackets

A Short Course on Topological Insulators : Band Structure and Edge States in One and Two Dimensions / by János K. Asbóth, László Oroszlány, András Pályi Pályi.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Physics ; 919Publisher: Cham : Springer International Publishing : Imprint: Springer, 2016Edition: 1st ed. 2016Description: 1 online resource (XIII, 166 pages 44 illustrations, 23 illustrations in color.)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319256054
Subject(s): Additional physical formats: Print version:: A short course on topological insulators : band-structure and edge states in one and two dimensions; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 530.41 23 ASB
Contents:
The Su-Schrieffer-Heeger (SSH) model -- Berry phase, Chern Number -- Polarization and Berry Phase -- Adiabatic charge pumping, Rice-Mele model -- Current operator and particle pumping -- Two-dimensional Chern insulators - the Qi-Wu-Zhang model -- Continuum model of localized states at a domain wall -- Time-reversal symmetric two-dimensional topological insulators - the Bernevig-Hughes-Zhang model.-The Z2 invariant of two-dimensional topological insulators -- Electrical conduction of edge states.
Summary: This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Copy number Status Notes Date due Barcode Item holds
Reference Reference IIT Goa Central Library Technical 530.41/Asb (Browse shelf(Opens below)) 1 Reference IN15544|| 23-06-21|| 35.00%|| EUR 34.99 3769
Reference Reference IIT Goa Central Library Technical 530.41/Asb (Browse shelf(Opens below)) 2 Reference IN15544|| 23-06-21|| 35.00%|| EUR 34.99 3770
Total holds: 0

The Su-Schrieffer-Heeger (SSH) model -- Berry phase, Chern Number -- Polarization and Berry Phase -- Adiabatic charge pumping, Rice-Mele model -- Current operator and particle pumping -- Two-dimensional Chern insulators - the Qi-Wu-Zhang model -- Continuum model of localized states at a domain wall -- Time-reversal symmetric two-dimensional topological insulators - the Bernevig-Hughes-Zhang model.-The Z2 invariant of two-dimensional topological insulators -- Electrical conduction of edge states.

This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Description based on publisher-supplied MARC data.

© 2021 Managed and maintained by Central Library, IIT Goa