# Introduction to electrodynamics / David J. Griffiths (Reed College, Oregon).

Material type: TextPublisher: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2021Copyright date: ©2017Edition: Fourth editionDescription: xvii,599pContent type:- text

- unmediated

- volume

- 9781108822909

- 537.6 23 GRI

Item type | Current library | Collection | Call number | Copy number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|---|

Reference | IIT Goa Central Library | Reference | 537.6/GRI (Browse shelf(Opens below)) | 1 | Reference | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4004 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 2 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4005 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 3 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4006 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 4 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4007 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 5 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4008 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 6 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4009 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 7 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4010 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 8 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4011 | |||

Books | IIT Goa Central Library | Technical | 537.6/GRI (Browse shelf(Opens below)) | 9 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4012 | |||

Books | IIT Goa Central Library | Technical | 537.6 GRI (Browse shelf(Opens below)) | 10 | Available | IBC/22-23/IB/IN/259|| 13-07-22|| 30.00% | 4013 |

##### Browsing IIT Goa Central Library shelves, Collection: Reference Close shelf browser (Hides shelf browser)

532.0527/MAT An introduction to turbulent flow / | 532.5 BIR Transport Phenomena/ | 537.1/STR Electromagnetic theory / | 537.6/GRI Introduction to electrodynamics / | 539.72/Wil Nuclear and Particle Physics | 540/DES A Mole of Chemistry : An Historical and Conceptual Approach to Fundamental Ideas in Chemistry / | 541.2254/ORG Organometallic reactions and polymerization. |

Includes bibliographical references and index.

Vector analysis -- Electrostatics -- Potentials -- Electric fields in matter -- Magnetostatics -- Magnetic fields in matter -- Electrodynamics -- Conservation laws -- Electromagnetic waves -- Potentials and fields -- Radiation -- Electrodynamics and relativity.

"WHAT IS ELECTRODYNAMICS, AND HOW DOES IT FIT INTO THE GENERAL SCHEME OF PHYSICS? Four Realms of Mechanics In the diagram below, I have sketched out the four great realms of mechanics: Classical Mechanics Quantum Mechanics (Newton) (Bohr, Heisenberg, Schrödinger, et al.) Special Relativity Quantum Field Theory (Einstein) (Dirac, Pauli, Feynman, Schwinger, et al.) Newtonian mechanics is adequate for most purposes in "everyday life," but for objects moving at high speeds (near the speed of light) it is incorrect, and must be replaced by special relativity (introduced by Einstein in 1905); for objects that are extremely small (near the size of atoms) it fails for different reasons, and is superseded by quantum mechanics (developed by Bohr, Schrödinger, Heisenberg, and many others, in the 1920's, mostly). For objects that are both very fast and very small (as is common in modern particle physics), a mechanics that combines relativity and quantum principles is in order; this relativistic quantum mechanics is known as quantum field theory--it was worked out in the thirties and forties, but even today it cannot claim to be a completely satisfactory system. In this book, save for the last chapter, we shall work exclusively in the domain of classical mechanics, although electrodynamics extends with unique simplicity to the other three realms. (In fact, the theory is in most respects automatically consistent with special relativity, for which it was, historically, the main stimulus.)"-- Provided by publisher.