Introduction to smooth manifolds / John M. Lee.
Material type: TextSeries: Graduate texts in mathematics ; 218.Publication details: New York ; London : Springer, 2013.Edition: 2nd edDescription: xv, 708 p. : ill. ; 24 cmISBN:- 9781441999818 (hbk. : alk. paper)
- 514.3 23
Item type | Current library | Collection | Call number | Copy number | Status | Notes | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|---|---|
Reference | IIT Goa Central Library | Reference | 514.3 LEE (Browse shelf(Opens below)) | 1 | Reference | TTPP/148/2022-23||09-09-2022||30.00%||EUR 79.95 | 4050 |
Browsing IIT Goa Central Library shelves, Collection: Reference Close shelf browser (Hides shelf browser)
512.74 /FAR A primer on mapping class groups / | 512.815// ATI Introduction to commutative algebra/ | 512.9 JAC Basic Algebra I | 514.3 LEE Introduction to smooth manifolds / | 515/CAR Real analysis / | 515 RUD Function theory in the unit ball of Cn / | 515 TAO Analysis I |
Includes bibliographical references (p. 675-677) and indexes.
1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.