Lee, John M., 1950-

Introduction to smooth manifolds / John M. Lee. - 2nd ed. - New York ; London : Springer, 2013. - xv, 708 p. : ill. ; 24 cm. - Graduate texts in mathematics ; 218 . - Graduate texts in mathematics ; 218. .

Includes bibliographical references (p. 675-677) and indexes.

1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.

9781441999818 (hbk. : alk. paper)

2012945172

GBB267696 bnb

016122639 Uk


Manifolds (Mathematics)---Global Differential Geometry--Cell Aggregation

514.3