000 03304cam a22003737i 4500
001 19387392
003 OSt
005 20230220115019.0
008 161125t20172017njua b 001 0 eng d
010 _a 2016960820
020 _a9780691158662 (pbk.)
035 _a(OCoLC)ocn962353239
040 _aYDX
_beng
_cYDX
_erda
_dBDX
_dBTCTA
_dMDS
_dOCLCF
_dTFW
_dGZM
_dDHA
_dMNU
_dOCLCQ
_dDLC
042 _alccopycat
082 0 4 _a512.2
_223
245 0 0 _aOffice hours with a geometric group theorist /
_cedited by Matt Clay and Dan Margalit.
264 1 _aPrinceton, New Jersey :
_bPrinceton University Press ;
_c[2017]
264 4 _c©2017
300 _axii, 441 pages :
_billustrations ;
_c24 cm
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references (pages 419-436) and index.
505 0 _aGroups / Matt Clay and Dan Margalit -- ...and spaces / Matt Clay and Dan Margalit -- Groups acting on trees / Dan Margalit -- Free groups and folding / Matt Clay -- The ping-pong lemma / Johanna Mangahas -- Automorphisms of free groups / Matt Clay -- Quasi-isometries / Dan Margalit and Anne Thomas -- Dehn functions / Timothy Riley -- Hyperbolic groups / Moon Duchin -- Ends of groups / Nic Koban and John Meier -- Asymptotic dimension / Greg Bell -- Growth of groups / Eric Freden -- Coxeter groups / Adam Piggott -- Right-angled artin groups / Robert W. Bell and Matt Clay -- Lamplighter groups / Jennifer Taback -- Thompson's group / Sean Cleary -- Mapping class groups / Tara Brendle, Leah Childers, and Dan Margalit -- Braids / Aaron Abrams.
520 _a"Geometric group theory is the study of the interplay between groups and the spaces they act on, and has its roots in the works of Henri Poincaré, Felix Klein, J.H.C. Whitehead, and Max Dehn. [This book] brings together leading experts who provide one-on-one instruction on key topics in this exciting and relatively new field of mathematics .... An essential primer for undergraduates making the leap to graduate work, the book begins with free groups -- actions of free groups on trees, algorithmic questions about free groups, the ping-pong lemma, and automorphisms of free groups. It goes on to cover several large-scale geometric invariants of groups, including quasi-isometry groups, Dehn functions, Gromov hyperbolicity, and asymptotic dimension. It also delves into important examples of groups, such as Coxeter groups, Thompson's groups, right-angled Artin groups, lamplighter groups, mapping class groups, and braid groups. The tone is conversational throughout, and the instruction is driven by examples. Accessible to students who have taken a first course in abstract algebra, [the book] also features numerous exercises and in-depth projects designed to engage readers and provide jumping-off points for research projects"--
_cBack cover.
650 0 _aGeometric group theory.
_91773
650 7 _aGeometric group theory.
_2fast
_0(OCoLC)fst00940833
_91773
700 1 _aClay, Matt,
_eeditor.
_91867
700 1 _aMargalit, Dan,
_d1976-
_eeditor.
_91853
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c1509
_d1509